Integrating Aspects of Asset Management
Lehrinhalte
- Programming language "Python" at an advanced level
- Backtesting of trading strategies as well as setting up a live trading strategy on a server
- Teaching Linux, server setup as well as Interactive Brokers skills
- Online course and certification: Machine Learning using SAS Viya
- Online course: Using SAS Viya REST API with Python and R
Art der Vermittlung
Präsenzveranstaltung
Art der Veranstaltung
Pflichtfach
Empfohlene Fachliteratur
David Aronson: Evidenced-based technical analysis
Yves Hilpisch: Phyton for Finance
Yves Hilpisch: Phyton for Algorithmic Trading
Lern- und Lehrmethode
Interactive teaching (lecture and group works), self-study and certification for SAS Viya and Machine learning
Prüfungsmethode
This practical class has two components each counts for 50 points, in total 100 points.
Self-study: SAS Viya online courses (50 points)
Classroom teaching and group work for trading strategies and interactive brokers skills (50 points)
The rules are outlined in the syllabus of each lecturer.
Voraussetzungen laut Lehrplan
Courses of the 2nd semester
Schnellinfos
Studiengang
Quantitative Asset and Risk Management (Master)
Akademischer Grad
Master
ECTS Credits
6.00
Unterrichtssprache
Englisch
Studienplan
Berufsbegleitend
Studienjahr, in dem die Lerneinheit angeboten wird
2025
Semester in dem die Lehrveranstaltung angeboten wird
3 WS
Incoming
Ja
Lernergebnisse der Lehrveranstaltung
Learning outcomes After the successful completion of the course, students are able to use the software “Python” on an advanced level and to apply the programming knowledge on setting up a trading strategy, backtesting a trading strategy and optimize a portfolio. Students are familiar with Linux and server setup and can apply the learnings to interactive brokerage.
Students are able to work with the SAS software Viya and can apply the programming skills to Machine Learning and REST API.
Kennzahl der Lehrveranstaltung
0613-09-09-BB-EN-29